

 Swinburne Research Bank
 http://researchbank.swinburne.edu.au

Yang, Z., & Liu, C. (2006). On the development of a multiple-compensation mechanism for

business transactions.

Originally published in J. X. Yu, M. Kitsuregawa, & H. V. Leong (eds.). Proceedings of the 7th
International Conference on Advances in Web-Age Information Management (WAIM 2006),

Hong Kong, China, 17–19 June 2006.
Lecture notes in computer science (Vol. 4016, pp. 581–592). Berlin: Springer.

Available from: http://dx.doi.org/10.1007/11775300_49

Copyright © 2006 Springer-Verlag Berlin Heidelberg.

The original publication is available at www.springer.com.

This is the author’s version of the work. It is posted here with the permission of the publisher for
your personal use. No further distribution is permitted. If your library has a subscription to these
conference proceedings, you may also be able to access the published version via the library

catalogue.

Accessed from Swinburne Research Bank: http://hdl.handle.net/1959.3/5807

On the Development of a Multiple-Compensation
Mechanism for Business Transactions

Zaihan Yang and Chengfei Liu

Faculty of Information and Communication Technologies
Swinburne University of Technology

Melbourne, VIC 3122, Australia
{zyang, cliu}@ict.swin.edu.au

Abstract. Compensation is a widely used concept for maintaining atomicity in
both the advanced transaction models and transactional workflow systems.
Some Web service protocols also adopt the compensation mechanism for fail-
ure recovery when providing transaction management. However, the compen-
sation mechanisms used in these models or protocols are too fixed and cannot
satisfy the various requirements of different applications. In this paper, a multi-
ple-compensation mechanism is proposed and defined explicitly in a business
process model. An algorithm on how to implement this multiple-compensation
mechanism for backward recovery is designed and its computation complexity
is analysed.

1 Introduction

These years have seen the widespread use of transaction management in non-
traditional applications. The transactions in these applications are different from tradi-
tional transactions [1,2] for their long-time running and for that they may access data
held in heterogeneous, autonomous and distributed systems. The ACID properties
will be too strict for them to follow. To overcome the limitations of traditional trans-
actions, some advanced transaction models (ATMs) [3] have been proposed, such as
Sagas [4], closed/open nested transactions [5, 6], multi-level transactions [6], flexible
transactions [7] and Contracts [8].

The mechanism of compensation is originally proposed by Gray in [9], and then
widely used in ATMs to maintain atomicity when the isolation property has been
relaxed [9, 10]. For a transaction T, its compensating transaction C is a transaction
that can semantically eliminate the effects of the transaction T after T has been suc-
cessfully committed. For example, for a DEPOSIT transaction, its compensating
transaction can be a WITHDRAW. We take the Sagas model as an example to clarify
how the compensation mechanism is used. In Sagas, the long transaction is divided
into several short subtransactions each of which strictly follows the ACID properties.
The isolation for the global transaction is relaxed, since subtransactions can release
the resources they hold and publicise their effect to other subtransactions before the
global transaction commits. For each subtransaction (except for the very last one),

there exists a corresponding compensating transaction. When a subtransaction fails, it
will firstly be rollbacked by a transaction manager and all its preceding subtransac-
tions will be compensated by executing their corresponding compensating transac-
tions in a reverse order.

A compensating transaction has some special characteristics besides the fundamen-
tal properties of a transaction. First of all, a compensating transaction eliminates a
transaction’s effect in a semantic manner, rather than by physically restoring to a
prior state. Secondly, a compensating transaction is retriable, namely, once the com-
pensating transaction is invoked to execute, it will ultimately commit successfully.
Thirdly, a compensating transaction is always regarded as being associated with a
compensated-for transaction. In most situations, it is the programmer’s responsibility
to pre-define a compensating transaction.
 Compensation mechanism is not only widely used in ATMs but also adopted by
transactional workflows to maintain reliability and consistency of business processes.
It is assumed that users can define for each task in a business process one compensat-
ing task [11, 12]. When some committed tasks which are called compensated-for
tasks need to be undone, their corresponding compensating tasks will be invoked.

The loosely coupled property of Web services offers a good environment for busi-
ness process collaborations. Some existing Web service protocols, such as WSCI [13],
BPEL4WS [14] and WS-CDL [15] also provide some transaction management by
supporting the open nested transaction model and compensation mechanism.

Currently, each task can only have one compensating task. This compensation
mechanism is too fixed and not flexible enough to adjust to different application re-
quirements. For example, when penalty has to be considered for carrying out com-
pensation, different penalty polices will result in different compensation strategies. As
a result, a multiple-compensation mechanism is necessary. This paper proposes a
concept of multiple-compensation and describes how to incorporate it in workflow
systems. The rest of the article is organised as follows. Section 2 gives a motivating
example to clarify the importance of multiple-compensation. Section 3 defines a busi-
ness process model with the multiple-compensation feature. Section 4 introduces an
algorithm on how to implement the multiple-compensation mechanism and analyse its
complexity. Section 5 discusses the related work on compensation. Section 6 con-
cludes the paper and indicates the future work.

2 Motivating Example for Multiple-Compensation

Consider a travel reservation process shown in Figure 1 as an example. The whole
business process has ten tasks. Travellers will send their trip requests to a travel agent
(SR). After receiving the request and sending back acknowledgment (SA), the travel
agent will invoke two concurrent activities at the same time: to reserve proper tickets
for the traveller via the airline company (BAT) and to book a hotel for the traveller to
reside in the destination place (BH). Whether to rent a car in the visiting place is an
optional task determined upon the traveller’s requirements (RC). During the booking
process, travellers should provide their credit card information for identity validation.
After all the necessary reservations have been completed, the travel agent will send an

itinerary describing the reservation information and an invoice to the traveller (SBS).
The traveller can send acknowledgment to confirm his or her bookings (ACK). Be-
fore the airplane departure, the traveller can still choose to cancel the booking (TC) or
confirm the booking by paying the money (TP). After the traveller finishes purchas-
ing, the travel agent will send airplane ticket and confirmation letter for hotel booking
and for car rental to the traveller. If the traveller cancels the booking or does not com-
plete purchasing after departure, a penalty will apply.

Fig.1. A travel reservation business process example

There exists compensation dependency among tasks. For example, since BAT and
BH are concurrent tasks, and only when both of them successfully complete can the
succeeding task be executed, consequently, either BAT or BH fails, the other commit-
ted task should be compensated.

Consider the situation for the traveller to cancel the booking after having sent out
the acknowledgment information. Some corresponding compensation tasks should be
carried out due to the cancelling behaviour. Associated with these cancellations, the
companies such as the airline company will normally take actions based on some
penalty policies for the sake of their own interests. The following table illustrated the
penalty policies taken by an airline company.

Table 1. An example of the penalty policy of an airline company

Time column indicates when the traveller cancels his booking, 2 weeks before de-
parture, 5 days, 2 days or right before departure (0 days); User column indicates the
different status of the users and correspondingly they have different privileges. Pen-
alty column indicates the different charges the company will ask for due to the time to
cancel and the user status.

A penalty policy is associated with a compensation task and can be regarded as
part of the compensation task. Different penalty policies will be adopted in different
cases, leading to different compensation tasks. Our multi-compensation mechanism is
motivated to deal with this situation.

3 Business Processes with Multiple-Compensation Mechanism

From the motivating example described in the previous section, we can see that the
multiple compensations are common phenomena in real applications. Consequently, a
corresponding multiple-compensation mechanism should be considered and reflected
in the business process models. In this section, we introduce the multiple-
compensation mechanism in a business process environment which associates for
each task several compensating tasks. We give formal definitions of a business proc-
ess model with a multiple-compensation feature in the following.

Definition 1. A business process can be modelled as an acyclic directed graph in the
form of),,,(sntENG , where
(1) N is a set of nodes. Each node corresponds to a task in the business process.

Namely, },...,,{ 21 mnnnN = ,)1(miNni ≤≤∈ represents a task.
(2) E is a set of directed edges. Each edge Enne ∈=),(21 corresponds to the

control dependency between n1 and n2, where n1, n2 ∈ N.
(3) For each Nn∈ , Ind(n) and Outd(n) define the number of edges which take n as

the terminating node and starting node, respectively.
(4) t: N→ Type is a mapping function, where Type={normal, And-Join, And-Split,

Or-join, Or-Split} . It is easy to see that:
 If t(n) = “normal” then ind(n) = outd(n) = 1.
 If t(n) = “And-Split” or ”Or-Split” then ind(n) = 1, outd(n) > 1.
 If t(n) = “And-Join” or ”Or-Join” then ind(n) > 1, outd(n) = 1.
(5) sn is the starting task of the business process, which satisfies that sn N∈ and

() 0sInd n = .

Tasks are the main components of a business process. A task can be modelled as a
combination of a normal part (of operations), which is used for forward execution and
a compensation part (of operations), which is used for backward recovery. In order to
introduce the mechanism of multiple-compensation, we define for the compensation
part of each task not only one, but a set of compensating tasks. We can model a task
as follows.

Definition 2. A task n is defined as),,(Ctbtf where,
(1) tf defines the forward execution part (normal part) of n. The set of input and

output parameters of tf is denoted as Par. When tf is invoked, Par will be re-
corded in a system log.

(2) tb defines the backward execution part (compensation part) of n. When tb is
invoked, the Par, which is stored in a system log, will be adopted.

(3) C is a set which consists of a set of compensating tasks defined for the task n.
When a task needs to be compensated, its backward execution part tb will be in-
voked. Then the tb will select from the set C one appropriate compensating task
for execution according to some decision criteria.

More details on the process of selecting will be explained in Section 4.

Definition 3. An instance of a business process graph (, , ,)sG N E t n is defined as an
acyclic graph (, , , , , ,)sG N E t st et s n , where
(1) N N⊆ Each Nni ∈ corresponds to a task instance in the business process

instance.
(2) E E⊆ . Each edge 1 2(,)e n n E= ∈ corresponds to the control dependency be-

tween task instances 1n and 2n , where 1 2,n n N∈ .
(3) :t N Type→ is the same mapping function as that defined in the business proc-

ess model G .
(4) , :st et N Time→ are functions which map a in N∈ to a specific system time,

where ()ist n indicates the starting time of in and ()iet n indicates the terminating
time of in .

(5) :s N States→ is a function which maps each task instance in set N to a certain
kind of states in set States , where States ={initial, active, complete, ended, se-
lecting, compensating, faulting}.

(6) sn indicates the starting task instance.

(7) NNsuccprec 2:, → are functions which define for each task instance Nn i∈ its
preceding task instances and succeeding task instances respectively. jn is said to

be the preceding task instance of in when it exists that (,)j in n E∈ . jn is said to

be the succeeding task instance of in when it exists that (,)i jn n E∈ .

Definition 4. The executed part of (, , , , , ,)sG N E t st et s n is denoted as
(, , , , , ,)E E E sG N E t st et s n , where EN , EE are subsets of N and E respectively and for

each i En N∈ , () " "is n initial≠ .

4 Implementing Multiple-Compensation

Upon the definitions given in Section 3, we present an algorithm on how to im-
plement the multiple-compensation mechanism in this section. Before the presenta-
tion of the algorithm, the main ideas of it will be firstly introduced. The analysis for
the computational complexity of the algorithm will be given in the end.

4.1 Algorithm Introduction

The algorithm describes what should be done with the multiple-compensation
mechanism to maintain atomicity and consistency of the whole business process in

the presence of tasks’ failures. The algorithm is invoked by the input of the executed
part of a business process instance EG with one or more failed task instances. A
system log will play an important role in the algorithm. For each executed task in-
stance En G∈ , the input/output parameters Par of tfn. , the starting time ()st n , the
terminating time ()et n and the current state ()s n will all be kept in a system log.

Due to the compensation dependencies among tasks, the abortion or compensation
of some tasks will lead to the abortion or compensation of other tasks. For example,
when a “normal” task is aborted or compensated, its only one preceding task should
be compensated. When an “And-Join” task is aborted or compensated, all of its mul-
tiple preceding tasks should be compensated. When a task that is one of the
succeeding tasks of an “And-Split” task is aborted or compensated, not only the “And-
Split” task itself but all the tasks on its succeeding branches should also been
compensated for. The abortion or compensation of tasks should be executed in a
reverse order with the business process control flow.

The main principle of the algorithm is to traverse the graph EG twice in opposite
directions. One is backward traversing (recovery), which keeps processing and re-
moving nodes from set NP (Nodes-to-be-Processed) as well as repetitively adds new
traced preceding tasks into set NP for processing. The other is forward traversing
(tracing), which keeps tracing succeeding tasks until some certain tasks are reached.

The algorithm starts from a failed task in graph EG and invokes the backward trav-
ersing first. During the process of backward traversing, the preceding tasks except
those And-Split tasks of the currently processed task will be put into set NP in order
for processing. The order of adding tasks into set NP indicates the corresponding
compensation order. The tasks in NP, which have not been completed successfully,
will be aborted by system. Other tasks in NP, which have already successfully com-
mitted will be compensated for. When a task is going to be compensated, its back-
ward part tb will be invoked. The backward part tb will then select from the set of
compensating tasks one appropriate compensating task to execute according to those
system-logged information of the task.

When the preceding task of the currently processed task is an And-Split task, a for-
ward traversing process will be needed. The forward traversing process will traverse
all the succeeding branches of the And-Split task until a certain task of each branch
which has no further succeeding task or which has already been in set NP is reached.
The whole algorithm will be terminated when the starting task instance in graph EG is
reached.
 Please note that we only consider the execution part of the business process
instance. So for those Or-Join and Or-Split tasks, their proceding tasks and
succeeding tasks will be specific. We can treat them as normal tasks.

4.2 Algorithm Description

We now describe the algorithm for implementing the multiple-compensation
mechanism in a more formal way as follows.

Algorithm 1: backward-recovery
Input
The executed part of a business process instance (, , , , , ,)E sG N E t st et s n , where

)"")((faultinginsNinin =∧∈∃ .
Output
The updated executed part of a business process instance (, , , , , ,)E sG N E t st et s n , where

)"")((endedinsNinin =→∈∀ .
Steps:

1. for each in N∈ , if () " "is n faulting= then {NP={ in }; Skip} /* put one faulting
 task in NP */

2. ASMarded = φ /* used for marking tasks of the type “And-Split” */
3. for each in NP∈ {
 /* Processing Part*/
4. if () " "is n active= then () " "is n ended= ;
5. if () " "is n faulting= then () " "is n ended= ;
6. if () " "is n complete= then { () " "is n selecting= ; multiple-compensate(in);}

/* invoke algorithm 3 of multiple-compensate*/
7. { }iNP NP n= − ;

8. if i sn n= then return updated EG .
 /* Generating Part */
9. if () " "it n normal= or () " "it n And Split= − then {
10. (())p in getone prec n= ; /* getone(s) take one element from set s */

11. if () " "pt n And Split≠ − then { }pNP NP n= U ;

12. else if pn ASMarked∉ then { /* the And-Split node has not been marked*/

13. forward-tracing (, , , () { })E p iG NP ASMarked succ n n−);
/* invoke algorithm 2 of forwardtracing*/

14. { }pASMarked ASMarked n= U ;
15. }
16. else { /* the And-Split node has been marked*/
17. ()pAsucc succ n= ;

18. for each jn Asucc∈ if () " "js n ended= then { }jAsucc Asucc n= − ;

19. if Asucc φ= then { { }pNP NP n= U ; { }pASMarked ASMarked n= − ;}
20. }
21. }
22. else if () " "it n And Join= − then ()iNP NP prec n= U ;
23. }
 Algorithm 1 describes the backward traversing process. It takes the executed part
of a business process instance graph EG as an input and starts from an arbitrary fault-
ing task in the graph. After the execution of the algorithm, all the current states of
tasks in EG will be set into “ended”. The main body of the algorithm consists of two

parts, processing part and generating part. During the processing part, tasks in set NP
will be processed differently. For those tasks with current states of “active” or
faulting”, they will be undone by the transaction manager, while if their states are
“complete”, they will be compensated for. Algorithm 3 will be invoked to
compensate these compensated-for tasks. During the generating part, the preceding
tasks of the currently processed task will be traced. For a normal task or And-Split
task, its preceding task that is not an And-Split task will be added into set NP. For an
And-Join task, all its preceding tasks will be added into set NP. The process happens
repetitively until at last the starting task is reached. When an And-Split task is first
reached, a forward tracing process is associated, which will be described explicitly in
algorithm 2. In order to avoid reduplicate traversing, a set ASMarked is constructed.
The And-Split tasks, which have once been processed, will be added into set AS-
Marked. They will not be forward traced again even though they will be reached later
during the traversing.

Algorithm 2 forward-tracing
Input: , , ,EG NP ASMarked Asucc
Output: NP
Steps:

1. AJMarked φ=
2. for each in Asucc∈ {
3. { }iAsucc Asucc n= − ;
4. if in NP∉ and ()isucc n φ= then { }iNP NP n= U
5. else if ()isucc n φ≠ then {
6. (())iAsucc Asucc succ n AJMarked= −U ;
7. if () " "it n And Split= − then { }iASMarked ASMarked n= U
8. else if () " "it n And Join= − then { }iAJMarked AJMarked n= U
9. }
10. }
11. return NP.

 Algorithm 2 describes a forward tracing process invoked when an And-Split task is
first reached. For those And-Split tasks, all of its succeeding branches except those
that have been processed will be traversed until the task of each branch that has al-
ready been in set NP or has no succeeding task is reached. In the latter situation, the
task that has no succeeding tasks will be put into set NP. To avoid reduplicate trav-
ersing, two sets ASMarked and AJMarked are used to contain those And-Split tasks
and And-Join tasks that have once been traversed.

Algorithm 3 multiple-compensate
Input: in
Steps:

1. invoke .in tb ;

2. (, (), ()) :i i j jtb par st n et n c c C→ ∈ ; /* select from set C one appreciate compensating task
based on some system-logged information*/

3. () " "is n compensating= ;
4. execute jc ;

5. () " "is n ended= ;
6. return.

Algorithm 3 describes the multiple-compensation process. When a task in set NP is
going to be compensated, its tb part will be invoked. Then it will choose from the set
of its compensating tasks one appropriate task for executing.

4.3 Computational Complexity Analysis

Algorithms 1, 2 and 3 describe the whole process of backward recovery using the
multiple-compensation mechanism. The main principle is to traverse the graph EG
for two times, one for backward traversing, and the other for forward traversing.

For algorithm 1, we can see that it traverses backward through edges in the graph
EG from a faulting node to the starting node and repetitively adds preceding nodes

into set NP. Set NP grows dynamically during the process of traversing. Conse-
quently, the complexity of algorithm 1 should be equal to O (|E|).

For algorithm 2, it describes a forward traversing process from any And-Split node
in the graph to the node of each of its branch paths that is in set NP or has no suc-
ceeding nodes. New found succeeding nodes during traversing are added into set
Asucc thus makes it grow gradually. Its complexity should also be equal to O (|E|).
However, extra cost comes from step 6, which contains two set computation between
succ(ni) (through traced edges) and Asucc and AJMarked, respectively. We consider
the worst situation when Asucc and AJMarked are proportional to |N|, so the com-
plexity for (())iAsucc Asucc succ n AJMarked= −U will be equal to

(| | log | |)O E N (we may use indices for both Asucc and AJMarked). As a result, the
complexity of algorithm 2 should be (| | log | |)O E N .

For algorithm 3, it will be invoked for all nodes that have been completed success-
fully. The complexity for selecting one appropriate compensating task among several
compensating tasks would be a constant. So, the complexity for algorithm 3 would be
O (|N|), which is less than O (|E|).

We can conclude that the total complexity for algorithms 1, 2 and 3
is (| | log | |)O E N .

5 Related Work

Compensation mechanism is firstly proposed in ATMs. It is then widely adopted
by transactional workflows and Web service transaction protocols to maintain atom-
icity when isolation property is relaxed.

For transactional workflow systems, the notion of compensation is of great impor-
tance, since most workflow instances tend to be long running and the processing
entities of some tasks do not support transaction management (such as file systems or
legacy systems). The backward recovery based on compensation is well supported in
some workflow systems, the most typical of which are the FlowMark workflow sys-
tems and the Virtual Transaction Model.

In FlowMark [16] workflow systems, the notion of sphere of joint compensation,
which is proposed by Frank Leymann [17] for providing partial backward recovery,
is well supported. A sphere is a collection of tasks in a workflow. It should be satis-
fied that either all the tasks in the sphere successfully complete or all of them should
be compensated. Each sphere and each task enclosed in the sphere is defined to be
associated with a compensating task. The sphere can be aborted by compensating its
composed tasks individually or by invoking the compensation task for the sphere as a
whole. Spheres can overlap and be nested. If a task fails, the sphere that immediately
encloses it is compensated. Optionally, other spheres that enclose this sphere can be
compensated and this can go on recursively.

The Virtual transaction model [18] specifies Virtual Transaction (VT) regions on
top of a workflow graph. Upon a failure during the execution of a task enclosed in a
VT region, all tasks in the region are compensated in the reverse order of their for-
ward execution, until a compensation end point is reached.

Confirmation is a new mechanism proposed in [19]. It is able to modify some non-
compensatable tasks to make them compensatable. While compensation is to seman-
tically eliminate the effects of some completed tasks, confirmation is to semantically
commit them. With confirmation mechanism, a task in a business process will not
only be associated with a compensating task but also a confirmation task. Once a
workflow process instance is executed successfully, the confirmation tasks of all the
executed tasks will be executed automatically.

The technology of Web service is developing rapidly. It offers a good environment
for business process execution since the Web service components are loosely coupled
with each other. Some Web service protocols include transactional support mecha-
nism. For example, the WSCI, WSBPEL and WS-CDL all support open nested trans-
action model and compensation mechanism. The Web service business activity trans-
action protocol (WS-BA) [20] is also compensation-based.

Compared with our multiple-compensation mechanism, those compensation
mechanisms proposed in ATMs, transactional workflows are not flexible enough.
They associate for each task only one compensating task. The compensation mecha-
nism adopted in some Web service protocols is targeted at a scope (or context) level.
Scopes and contexts can be nested, which will lead to redundant definition of com-
pensation tasks and cannot be executed automatically. Our multiple-compensation
mechanism defines for each task several compensating tasks, thus can satisfy various

application demands. The compensating task can be invoked and executed automati-
cally once its corresponding task needs to be compensated for.

6 Conclusion

Compensation is an important mechanism for backward recovery in long running
business processes. Its main principle is to semantically eliminate the effects of some
successfully committed tasks in the business process. System developers or users can
define for each task in the business process a corresponding compensating task.
When a certain task needs to be compensated, its compensating task will be invoked.

In the previous studies, only one compensating task is defined to be associated
with a task, which cannot satisfy the different requirements in real applications when
some other conditions should be considered, such as penalty, time limits, different
user privilege, etc. In this paper, we took into account this problem and proposed a
new mechanism of multiple-compensation, which associates for each task several
compensating tasks. When a task should be undone, one appropriate compensating
task will be selected to invoke under some pre-fixed conditions.
 We incorporated the multiple compensation mechanism into a business process
model by giving some formal definitions. We then introduced and described in detail
an algorithm on how to decide which tasks should be compensated, in which order
they should be compensated and which one specific compensating task should be
selected to compensate them. The algorithm is efficient, which basically traverses the
executed part of a business process graph twice. In most cases, the complexity of the
algorithm is O (|E|), with the worst case to be (| | log | |)O E N .

For future work, we would like to take into account the concept of sphere of the
joint compensation to see how the multiple compensation mechanism can be applied
to it. We also would like to incorporate the mechanism of multiple-compensation into
a Web service environment to see what benefits it will bring to improve the existing
Web service protocols on Web service transactions.

Acknowledgement

This work is supported by the Australian Research Council Discovery Project un-
der the grant number DP0557572.

References

1. J. Gray and A.Reuter. Transaction Processing: Concepts and Techniques, Morgan Kauf-
mann,1993.

2. N.Lynch, M.Merritt, W.Weihl and A. Fekete. Atomic Transactions. Morgan Kaufmann,
1993.

3. A. Elmagarmid (Ed.). Database Transaction Models for Advanced Applications, Morgan
Kaufmann, 1992.

4. H. Garcia-Molina, K. Salem. Sagas. In the Proceedings of the ACM Conference on Man-
agement of Data, 1987, pp.249-259.

5. J.Moss. Nested Transactions and Reliable Distributed Computing. In Proceeding of the 2nd
Symposium on Reliability in Distributed Software and Database Systems, 1982, pp. 33-39,
Pittsburgh, PA. IEEE CS Press.

6. G.Weikum and H. Schek. Concepts and applications of multiple transactions and open-
nested transactions. A.Elmagarmid(Ed.), Morgan Kaufmann, chapter 13, 1992.

7. A. Zhang, M. Nodine, B. Bhargava and Bukhres,O. Ensuring Rlaxed Atomicity for Flexi-
ble Transactions in Multidatabase Systems. In Proceedings of 1994 SIGMOD Interna-
tional Conference on Management of Data, 1994, pp. 67-78.

8. H. Wachter and A. Reuter. “The Contract Model”, Database Transaction Models for
Advanced Applications, A.Elmagarmid (Ed.) Morgan Kaufmann, San Francisco, CA,
1992.

9. J. Gray. The transaction concept: Virtues and Limitations. In Proceeding of the Interna-
tional Conference on Very Large Data Bases, Cannes, France, 1981, pp. 144-154.

10. H.F. Korth, E. Levy and A. Silberschatz. A formal approach to recovery by compensating
transactions. In the Proceedings of the 16th VLDB Conference, 1990, pp. 139-146.

11. B. Kiepuszewski, R. Muhlberger and M. Orlowska. Flowback: Providing backward re-
covery for workflow systems. In the Proceedings of the ACM SIGMOD International
Conference on Management of Data, 1998, pp. 555-557.

12. D.Kuo, M. Lawley, C. Liu and M. Orlowska. A model for transactional workflows. R.
Topor (Ed.). In the Seventh Australasian Databases Conference Proceedings, vol. 18, Mel-
bourne, Australia, 1996, Australian Computer Science Communications, pp. 139-146.

13. A.Arkin, et al. Web Service Choreography Interface (WSCI) 1.0, August 2002,
http://www.w3.org/TR/wsci/.

14. T.Andrews, et al. Business Process Execution Language for Web Services (BPEL4WS)
1.1, May 2003, http://www.ibm.com/developerworks/library/ws-bpel.

15. N.Kavantzas. et al. Web Services Choreography Description Language (WS-CDL) 1.0.
2004. http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427.

16. F.Leymann and D.Roller. Business process management with FlowMark. In the Proceed-
ings of IEEE CompCon (San Francisco, CA, 1994) (Los Alamitos), CA: IEEE Computer
Society Press), pp 230-234.

17. F.Leymann. Supporting business transactions via partial backward recovery in workflow
management systems. In the Proceedings of BTW’95, 1995, pp. 51-70.

18. V.Krishnamoorthy and M.Shan. Virtual Transaction Model to support Workflow Applica-
tions. SAC (2), 2000, pp. 876-881

19. C. Liu, X. Lin, M. E. Orlowska and X. Zhou. Confirmation: increasing resource availabil-
ity for transactional workflows. Inf. Sci. 153, 2003, pp. 37-53.

20. L. F. Cabrera et al. Web Services Business Activity Framework (WS-BusinessActivity).
2005. http://ftpna2.bea.com/pub/downloads/webservices/WS-BusinessActivity.pdf.

